Stotteren als uiting van spraakplanning
een vergelijking tussen voorgelezen
en spontane spraak

M.L. Koopmans, I.H. Slis en T.C.M. Rietveld

Vakgroep Taal en Spraak, Katholieke Universiteit Nijmegen

De frequentie van gestotterde woorden is vergeleken in voorgelezen en
spontane spraak op verschillende woordposities en woordtypes. Het blijkt
dat er in voorgelezen spraak gemiddeld minder wordt gestotterd dan in
spontane spraak. Bovendien wordt er in spontane spraak, in tegenstelling
tot voorgelezen spraak, aan het begin van deelzinnen meer gestotterd dan
in het midden of op het eind. Wanneer het aantal gestotterde woorden een
aanwijzing is voor de mentale energie die besteed wordt aan plannings-
processen, kunnen we concluderen dat in voorgelezen spraak minder in-
spanning wordt geeist voor planning in het begin van deelzinnen dan in
spontane spraak. Met betrekking tot woordtype valt op dat er zowel in
voorgelezen als in spontane spraak relatief meer gestotterde functiewoor-
den voorkomen aan het begin van deelzinnen dan op de overige woordpo-
sities. Dit effect is sterker in spontane dan in voorgelezen spraak. Gezien
de syntactische rol van functiewoorden lijkt het dat syntactische planning
meer aan het begin van deelzinnen plaats heeft en dat dit proces in voorgelezen
spraak minder zwaar belastend is voor het spraakproductiesysteem dan in
spontane spraak. Deze conclusie wordt gesteund door het feit dat in spon-
tane spraak meer op functiewoorden wordt gestotterd dan in voorgelezen
spraak.

Inleiding

Verschillende onderzoeken ondersteunen de aannames dat stotteren samenhangt
met lexicale en syntactische beslissingen (St. Louis 1979). Brown (1937),
Schlesinger et al. (1965) en Quarrington (1979) vonden dat er relatief veel ge-
stonderd wordt op woorden met een hoge informatieinhoud (zeldzame woorden).

Correspondentieadres: M.L. Koopmans, Vakgroep Taal en Spraak, Katholieke Universi-
teit Nijmegen, Postbus 9103, 6500 HD Nijmegen.

De hierboven beschreven relatie tussen stotteren en spraakplanning is goed onder te brengen in het ‘demands and capacity’ model van Starkweather (1987). Volgens dit model treedt stotteren op wanneer er sprake is van een ‘overbelasting’ van het vermogen van het spraakproductiesysteem om een spraakuiting naar behoren voor te bereiden en uit te voeren (capacity). Deze overbelasting kan het gevolg zijn van zowel interne als externe eisen (demands) die aan dit systeem
gesteld worden. In bovenstaand schema (Fig. 1) is dit in beeld gebracht; tussen
de aspecten van spraakvoorbereiding (planning; intern proces) en de gestotterde
spraak (articulatie; extern proces) wordt een medierend schakelconcept ‘overbe-
lasting van spraakcapaciteit’ verondersteld.

Bij externe demands (D in het schema) moet gedacht worden aan eisen die
sociaal/maatschappelijke verwachtingen stellen aan het min of meer bewust ge-
stuurde spraakgedrag. Interne demands zijn naast eisen die voortkomen uit pogingen
om te voldoen aan de normen die de spreker zichzelf oplegt t.a.v. emoties en
gedrag en de verwachtingen van de spreker (C in het schema), ook regels die
verbonden met de meer formele aspecten van spraak (A in het schema).
Onder de laatste vallen articulatie, fonetische aspecten en de grammaticaliteit
van de zinsbouw; deze laatste factoren zijn in dit verband nog niet experimenteel
onderzocht.

Het is in principe mogelijk dat een overbelasting van de capaciteit op ver-
schillende manieren de spraakoutput verstoort. Dit kunnen syntactische- of arti-
culatie-fouten zijn. Uit parallel onderzoek is gebleken dat stotteraars op precies
dezelfde wijze zinnen in syntactische segmenten opdelen (Koopmans et al. 1991b)
een de diepte van de grenzen daartussen op dezelfde wijze beoordeelden als niet-
stotteraars. Het feit dat er kwalitatieve en kwantitatieve verschillen optreden
zou erop kunnen wijzen dat deze taak voor normale sprekers en stotteraars even
zwaar is. Wij vatten dit op als een aanwijzing dat overbelasting van de capaciteit
pas een niveau lager een rol gaat spelen, namelijk bij de planning van de articu-
latie.

In het huidige onderzoek stellen wij ons tot doel om experimenteel na te gaan
of en hoe facetten van spraakplanning in het ‘demands and capacity’ model
passen. Hiervoor zijn twee linguïstische variabelen gekozen, syntactische planning
en woordkeuze en -insertie.

Een spreker moet voordat hij begint te praten een plan hebben over de volgor-
de waarin de inhoud van de uiting georganiseerd is. Hij zal daarom voorafgaand
aan – of aan het begin van – de uiting syntactische activiteiten moeten ontwikke-

Fig. 1. Schema van de plaats van linguïstische parameters in het ‘capacity and demands’
model van Starkweather.
len. Is eenmaal de abstracte semantische structuur van een uiting bepaald, dan zullen ook de functiewoorden die deze structuur ondersteunen gekozen moeten worden; zij spelen een sturende rol bij de bepaling van de volgorde van de inhoudswoorden. Het gebruik van functiewoorden kan daarom opgevat worden als het product van een grammaticale activiteit. Het is daarom te verwachten dat de capaciteit van het spraakproductiesysteem vooral aan het begin van een uiting hiermee belast wordt, en als er iets mis gaat door overbelasting, dat dat dan vooral aan het begin van de uiting bij het gebruik van functiewoorden manifest zal worden.

Bij de inhoudswoorden, die minder frequent zijn dan de functiewoorden, zullen vooral het zoekproces in het mentale lexicon en vervolgens het proces waarbij het gewenste woord op de juiste plaats in de syntactische structuur geplaatst wordt (woordinsertie), een belasting voor de spraakcapaciteit gaan vormen. Deze processen spelen zich af nadat de syntactische structuur gevormd is. Aangenomen wordt dat deze plaats hebben vlak voor of op het moment dat het betreffende woord geproduceerd moet worden. Een mogelijke overbelasting van het systeem bij een laagfrequent of anderszins moeilijk woord kan daarom overal in de uiting optreden.

We maken in dit onderzoek gebruik van twee spreekcondities waarvan aangenomen mag worden dat de gekozen variabelen (het syntactisch proces en woordselectie/insertie) een verschillende rol zullen spelen: 1. spontane spraak die in een interview wordt verzameld; 2. voorgelezen spraak.

In spontane spraak verwachten we dat syntactische processen een grote rol zullen spelen aangezien de spreker de uiting geheel zelfstandig moet vormen. In tegenstelling hiermee, wordt in voorgelezen spraak de grammaticale structuur al door de tekst aangeleverd en hoeft de spreker deze alleen maar te reproduceren. Hierdoor zullen in spontane spraak meer stotters optreden dan in voorgelezen spraak. Verwacht mag worden dat deze vooral zullen voorkomen op functiewoorden aan het begin van de uiting, dus daar waar de syntactische activiteit wordt ontblooid en dientengevolge de spraakproductiecapaciteit zwaar wordt belast.

In welke spraaksoort woordkeuze en -insertie de grootste belasting zal opleveren is moeilijk te voorspellen. Woordselectie zal in voorgelezen spraak vermoedelijk minder capaciteit vergen dan in spontane spraak omdat de woorden in voorgelezen spraak al gegeven zijn. Daar staat tegenover dat de spreker in spontane spraak vrij is om "gemakkelijke" woorden te kiezen. Deze twee factoren kunnen elkaar ongeveer in evenwicht houden. We beschikken niet over gegevens op grond waarvan we moeten aannemen dat het woordinsertie-proces in voorgelezen spraak verschilt van dat in spontane spraak. Op basis van deze overwegingen gaan we ervan uit dat het aantal stotters op inhoudswoorden in beide spraaksoorten even groot zal zijn en dat daarbij geen invloed van woordpositie zal optreden.

Men moet zich nu ook afvragen of zich tengevolge van die overbelasting ook andere (afwijkende) verschijnselen in de spraakproductie voordoen. We mogen aannemen dat als er bij stotteraars een overbelasting van het spraakproductiesysteem kan optreden, ook bij niet-stotteraars zich een verhoogde belasting of zelfs
overbelasting zal voordoen. In dat geval moet de component stotteren in het schema vervangen worden door andere niet-vloeibehden in spraak zoals invoeging van pauzes, verlengingen, articulatiefouten en langere reactietijden.

Op grond van bovengenoemde overwegingen kunnen de volgende hypothesen geformuleerd worden:

Hypothese 1: In spontane taal wordt meer gestotterd dan in voorgelezen spraak; spontane spraak vergt een grotere capaciteit gezien de grotere eigen activiteit voor vrijwel alle aspecten van het spreken.

Hypothese 2: Aan het begin van (deel)zinnen wordt vaker gestotterd dan in het resterende deel. Dit effect wordt toegeschreven aan de grotere belasting van de plannings-capaciteit aan het begin van een uiting.

Hypothese 3: Er treedt interactie op tussen woordtype en woordpositie. Op functiewoorden zal aan het begin van een deelzijn relatief meer gestotterd worden dan op een later tijdstip in de deelzijn, terwijl op inhoudswoorden op alle plaatsen evenveel gestotterd wordt.

De aandacht wordt aan het begin van de deelzijn vooral aan grammaticale aspecten besteed en – in het verlengde daarvan – aan functiewoorden; daardoor zal op die locaties een sterk beroep gedaan worden op de capaciteit voor het genereren daarvan.

Er is geen reden om te verwachten dat er ook voor inhoudswoorden een positie-effect gevonden zal worden. Lexicale zoek- en insertie-processen kunnen overal gedurende de uiting plaats hebben. De interactie zal bij spontane spraak sterker zijn dan bij voorgelezen spraak, aangezien bij voorgelezen spraak de grammaticale vorm al gegeven is.

Hypothese 4: Er treedt interactie op tussen spraaktype (spontaan vs. gelezen) en woordsoort (functiewoorden vs. inhoudswoorden). In spontane spraak wordt op functiewoorden meer gestotterd dan in voorgelezen spraak; op inhoudswoorden wordt in beide spraaktypen evenveel gestotterd.

In spontane spraak wordt er een groter beroep gedaan op de syntactische planningscapaciteit dan in voorgelezen spraak. Hierbij worden structurele componenten (cf. Morton, 1982) van het lexicon het sterkst aangesproken, hetgeen zijn weerslag vindt in een hogere stotterfrequentie op functiewoorden. Dit zal vooral aan het begin van deelzinnen (hypothesese 3) het geval zijn.

Voor inhoudswoorden wordt niet of in mindere mate verwacht dat het soort spraak (spontaan vs opgelezen) verschil oplevert. Lexicale insertie zal in spontane en voorgelezen spraak evenveel capaciteit vergen. In hoeverre dit ook voor woordselectie geldt is onzeker.
Experiment

Proefpersonen

Materiaal
Spontane spraak
Sporadische spraak werd in een interview-situatie verkregen. Aan alle proefpersonen werd gevraagd hun mening te geven over een bepaalde stelling m.b.t. eetgewoonten, bijvoorbeeld: "Wat lekker is, is gezond". Op deze manier was het mogelijk spontane spraak uit te lokken die niet alleen bestond uit simpele antwoorden op vragen zoals "ja" of "nee", maar ook uit enkelvoudige zinnen en zinnen met meerdere deelzinnen. Pas als de proefpersoon uitgesproken was werd de volgende vraag gesteld. Van de interviews werd per persoon een sample van een minuut geselecteerd. Elk geselecteerd sample bevatte het antwoord op de eerste vraag uit het interview. Wanneer daarmee niet de een-minuutgrens bereikt werd, werd een gedeelte van het antwoord op de tweede vraag toegevoegd. Van deze een minuut durende samples werd een transcriptie gemaakt, dat wil zeggen een zo letterlijk mogelijke schriftelijke registratie van de gesproken taal. Zinnen met interne pauzes langer dan 5 seconden werden weggelaten. De duur van 5 seconden staat gelijk aan die van een lange uitgesproken zin en is ons inziens daarom voldoende groot om van een abnormaal grote pauze te spreken. Dergelijke lange pauzes kwamen vooral voor aan het begin van zinnen.

Voorgelezen spraak
Alle proefpersonen lazen hardop een tekst van 81 zinnen voor. Deze tekst was voor iedere proefpersoon hetzelfde en zoveel mogelijk samengesteld op basis van de geproduceerde spontane spraak van alle deelnemers. Omdat de spontane spraak per persoon verschillend is, kon er niet eenzelfde voorleestekst voor alle deelnemers samengesteld worden die identiek is aan de tekst die elk van de personen spontaan geproduceerd heeft. Om de voor te lezen tekst toch zo veel mogelijk te laten lijken op de spontaan uitgesproken tekst zijn uit de spontane spraak 38 zinnen geselecteerd, 2 zinnen van ieder van de 19 proefpersonen. Deze zinnen bevatten elk een of meer gestotterde woorden. Uiteraard zijn deze zinnen in een natuurlijke, leesbare vorm in de voor te lezen tekst ondergebracht, dus zonder niet-vloeiendheden. De overige 43 zinnen (81-38) waren afkomstig uit interviews met normale sprekers. Er is naar gestreefd uitingen te kiezen die zowel uit enkelvoudige als uit complexe zinnen met ingebedde deelzinnen bestonden. De 81 zinnen zijn zodanig gerangschikt dat een niet-samenhangende tekst ontstond. Bij het oplezen moest elke zin daarom afzonderlijk begrepen worden en ontstond er in het verloop van de tekst geen toenemende voorspellende informatie over de volgende zinnen. Een mogelijke vermindering van stotteren
werd zo voorkomen. De eerste 5 zinnen en de laatste zin zijn niet in de analyse gebruikt zodat er uiteindelijk 75 (81-6) zinnen voor de analyse overbleven.

Analyse

Zowel de voorleestext als de transcripties van de spontane spraak werden opgedeeld in deelzinnen. Een deelzin is een groepje woorden dat bij elkaar hoort op basis van grammaticale, prosodische of perceptuele relaties. Het formele criterium dat we hiervoor hanteerden was dat een deelzin minimaal een subject (NP) en een predicaat (VP) moet bevatten. Onder dit criterium vallen de definities die Fodor et al. (1974) geven van de 'surface clause' en Ford (1982) en Holmes (1988) van de 'full finit clause'. Zie daartoe de voorbeelden 1 en 2 onder ‘woordtype’.

Onafhankelijke variabelen

Woordpositie: Binnen elke deelzin werden drie woordposities onderscheiden: W1: het eerste woord van de deelzin; W2: het tweede woord van de deelzin; WR: de overige woorden van de deelzin.

Woordtype: Een woord is gelabeld als functiwoord (F) of als inhoudswoord (L). Functiwoorden zijn voorzetsels, voornaamwoorden, voegwoorden en lidwoorden (Crystal 1980); zie ook de inleiding.

Inhoudswoorden zijn zelfstandige naamwoorden, bijvoeglijke naamwoorden, werkwoorden enz. (Crystal 1980). Hieronder volgen voorbeelden van een deelzin met woordtypen en woordposities:

Voorbeeld 1

<table>
<thead>
<tr>
<th></th>
<th>Wat het</th>
<th>eten betreft</th>
<th></th>
<th>ben ik</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F F</td>
<td>L L</td>
<td></td>
<td>L F</td>
</tr>
<tr>
<td>W1</td>
<td>W2</td>
<td>-- -- WR --</td>
<td></td>
<td>W1 W2</td>
</tr>
</tbody>
</table>

Voorbeeld 2

<table>
<thead>
<tr>
<th></th>
<th>ik denk</th>
<th></th>
<th>dat de</th>
<th>sneeuw</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F L</td>
<td>F</td>
<td>F</td>
<td>L</td>
</tr>
<tr>
<td>W1</td>
<td>W2</td>
<td></td>
<td>W1 W2</td>
<td>-- -- WR --</td>
</tr>
</tbody>
</table>

Soort spraak: Het soort spraak, spontane spraak uit een interview en voorgelezen spraak, vormde de derde onafhankelijke variabele in het experiment.

Afhankelijke variabelen

Stotterfrequentie: Per woordpositie en woordtype werd het aantal gestotterde woorden geteld (zie Tabel 1a). Voor het classifieren van niet-vloeiendheden werd de methode van Franken (1985) toegepast. In deze methode worden 5 types niet-vloeiendheden omschreven:

1. herhaling van een syllabe;
(2) repetitie van een klank (subsyllabisch);
(3) repetitie van meer dan een syllabe (suprasyllabisch);
(4) blokkade;
(5) verlenging.
De woorden die een van deze niet-vloeiendheden bevatten werden opgeteld en vormden samen het aantal gestotterde woorden.

Resultaten

In het algemeen bleek het niet moeilijk om aan te geven in welke categorie van de onafhankelijke variabelen (woordsoort en positie) de observaties moesten worden ondergebracht. Voor de afhankelijke variabele, de stotterscoring, is een betrouwbaarheidsanalyse uitgevoerd. Hiervoor werd een steekproef van 387 woorden genomen, die door de proefleider van het experiment en door een logopediste werden beoordeeld. Beide beoordelaars baseerden hun stotterscoring op de genoemde criteria voor stotteren. Evenals in het experiment werd elk woord gelabeld als gestotterd “(+)” of niet-gestotterd “(-)”. Over 5 van de 387 scoringen waren beide beoordelaars het oneens. De oordelen van de twee luisteraars correleerden hoog (phi-coefficient = 0.937, chi = 362.8, df = 1, p < 0.001, Ferguson 1971); op grond hiervan is besloten de rest van het materiaal door een enkele luisteraar – de eerste auteur – te laten scoren.

![Diagram](image)

Fig. 2. Het percentage gestotterde woorden op woordposities W1, W2 en WR in spontane en voorgelezen spraak.
Voorgelezen Spraak

% gestotterde woorden

- • Inhoudswoorden
- □ Functiewoorden

W1 W2 WR Woordpositie

Fig. 3. De percentages gestotterde inhoudswoorden en functiewoorden op woordposities W1, W2 en WR in voorgelezen spraak.

Spontane spraak

% gestotterde woorden

- • Inhoudswoorden
- □ Functiewoorden

W1 W2 WR Woordpositie

Fig. 4. De percentages gestotterde inhoudswoorden en functiewoorden op woordposities W1, W2 en WR in spontane spraak.
De gehele dataset is vervolgens aan een loglineaire analyse onderworpen, met de logits van de relatieve frequenties van stotteren als afhankelijke variabele. De onafhankelijke variabelen waren Positie (W1, W2 en WR), Woordtype (inhoudswoord, functiewoord) en Spraaktype (Spontaan vs. Voorgelezen). Door middel van een contrast zijn de effecten van positie uitgedrukt ten opzichte van de referentiegroep WR. Het verzadigde model, waarin alle factoren zijn opgenomen, leverde de volgende parameter- en z-waarden, en de corresponderende significantieniveaus op:

Aangezien alle factoren door een of meer significante parameter-waarden werden geregistreerd, lijkt een verzadigd model aangewezen om de data te beschrijven. We zullen de resultaten bespreken aan de hand van de eerder genoemde vier hypotheses; hierbij is een significantieniveau gehanteerd van 5%.

Hypothese 1: In spontane spraak wordt significant meer gestotterd dan in voorgelezen spraak: 8.7 vs. 6.6% (Fig. 2, Tabel 1a vs 1b). De betreffende parameter – no. 5 – is significant (Tabel 2).

Hypothese 2: Aan het begin van (deel)zinnen wordt vaker gestotterd dan in het resterende deel (Fig. 2). De relatieve stotterfrequenties zijn zowel op positie W1 als op positie W2 significant hoger dan op de overige posities (WR), getuige de de significante waarden van de parameters 3 en 4 ($z = 2.57$ en 4.97 resp.; zie...
Tabel 2. Parameters en z-waarden voor het verzadigde logit-model van de stotterfrequenties. STOT = responsevariable, TYPE = functiewoorden vs. inhoudswoorden, POSITIE = W1, W2 of WR, SPRAAK = voorgelezen vs. spontane spraak.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Coeff.</th>
<th>Z-waarde</th>
</tr>
</thead>
<tbody>
<tr>
<td>STOTT 1</td>
<td>-1.233</td>
<td>-45.12*</td>
</tr>
<tr>
<td>STOTT x TYPE 2</td>
<td>0.056</td>
<td>2.04*</td>
</tr>
<tr>
<td>STOTT x POSITIE 3</td>
<td>0.180</td>
<td>2.57*</td>
</tr>
<tr>
<td>STOTT x POSITIE 4</td>
<td>0.257</td>
<td>4.97*</td>
</tr>
<tr>
<td>STOTT x SPRAAK 5</td>
<td>-0.101</td>
<td>-3.68*</td>
</tr>
<tr>
<td>STOTT x TYPE x POSITIE 6</td>
<td>-0.222</td>
<td>-3.16*</td>
</tr>
<tr>
<td>STOTT x TYPE x SPRAAK 7</td>
<td>-0.125</td>
<td>-2.42*</td>
</tr>
<tr>
<td>STOTT x POSITIE x SPRAAK 8</td>
<td>0.072</td>
<td>2.62*</td>
</tr>
<tr>
<td>STOTT x POSITIE x SPRAAK 9</td>
<td>-0.089</td>
<td>-1.27</td>
</tr>
<tr>
<td>STOTT x POSITIE x SPRAAK 10</td>
<td>-0.175</td>
<td>-3.37*</td>
</tr>
<tr>
<td>STOTT x TYPE x POSITIE x SPRAAK 11</td>
<td>0.110</td>
<td>1.57</td>
</tr>
<tr>
<td>STOTT x TYPE x POSITIE x SPRAAK 12</td>
<td>0.136</td>
<td>2.63*</td>
</tr>
</tbody>
</table>

* = significant op 5% niveau.

Tabel 2). De relatieve stotterfrequentie op W2 wijkt sterker af van de referentiegroep dan op W1. Echter, dit effect is eigenlijk alleen toe te schrijven aan de 'spontane spraak', getuige ook de significante interactie 'STOT x POSITIE x SPRAAK' (parameters 9 en 10; Tabel 2). Figuur 2 laat zien dat de verschillen in stotterfrequenties tussen voorgelezen en spontane spraak zich eigenlijk alleen manifesteren aan het begin van de deelzinnen, op de posities W1 en W2, terwijl op de overige posities (WR) nagenoeg gelijke stotterfrequenties worden vastgesteld.

Hypothese 3: Ook deze hypothese wordt door de resultaten bevestigd: er treedt interactie op tussen Woordtype en Positie (de parameters 6 en 7 zijn beide significant). Op functiewoorden is de relatieve stotterfrequentie aan het begin van een zin groter dan op een later tijdstip, terwijl bij inhoudswoorden dit positie-effect zich niet voordoet (Fig. 3 en 4). Voorts is er sprake van een vier-weg interactie STOT x TYPE x POSITIE x SPRAAK. Deze interactie duidt op een effect van spraaktype (voorgelezen vs. spontane spraak) op de sterkte van de interactie STOT x TYPE x POSITIE (zie Figuren 3 en 4, en Tabel 1a-b).
Hypothese 4: De laatste hypothese, tenslotte, heeft betrekking op het effect van de interactie TYPE en SPRAAKTYPE op de relatieve frequenties van stotteren: parameter 8. Deze parameter is ook significant. In spontane spraak wordt relatief vaker op functiewoorden gestotterd dan in voorgelezen spraak (8.8 vs. 5.0%), terwijl op inhoudswoorden deze frequenties ongeveer gelijk zijn (8.5 vs. 8.1%) (zie ook Figuren 3 en 4, en Tabel 1a-b).

Discussie

De analyses van de gegevens die wij in onze spraak-elicitation experimenten hebben verkregen laten zien dat er in spontane spraak meer gestotterd wordt dan in voorgelezen spraak; een bevestiging van hypothese 1. Deze uitkomst kan opgevat worden als een bevestiging van de veronderstelling dat conceptualisering en formulering bijdragen tot het optreden van stotteren. Deze veronderstelling past in het ‘demands and capacity model’: de spreker moet bij spontaan spreken voor vrijwel alle aspecten van spraak activiteit inzetten. Hierbij wordt een groot beroep gedaan op de beschikbare capaciteit, die daardoor overbelast kan worden.

Een tweede hoofdeffect dat het onderzoek aan het licht heeft gebracht is de hogere stotterfrequentie in spontane spraak aan het begin van (deel)zinnen (de posities W1 en W2); een bevestiging van hypothese 2. Dit effect werd door het model voorspeld; de capaciteit die de spreker ter beschikking heeft wordt aan het begin van een uiting zwaarder belast. De omstandigheid dat er in spontane spraak wel, maar in voorgelezen spraak geen verhoogde stotteractiviteit aan het begin van deelzinnen wordt gevonden, geeft een beeld van de verdeling van ‘processing activiteit’ over de deelzinnen in beide typen spraak.

In zowel spontane spraak als opgelezen spraak is de stotterfrequentie op functiewoorden aan het begin van een deelzin groter dan meer naar het eind. Dit gegeven past in een model waarin verondersteld wordt dat aan het begin van de uiting de capaciteit vooral belast wordt met grammaticale activiteiten; het invullen van de functiewoorden om de zinsstructuur vast te leggen is deel van deze activiteit. Voor wat betreft de inhoudswoorden blijkt er geen afhankelijkheid te bestaan tussen plaats in de deelzin en de frequentie gestotterde woorden. Dit verschil tussen functiewoorden en inhoudswoorden als functie van de woordpositie werd in hypothese 3 voorspeld.

Een groot verschil tussen spontaan spreken en voorlezen is dat bij spontaan spreken de spreker zelf verantwoordelijk is voor de keuze en uitvoering van de grammaticale structuur van de uiting; dit komt in spraak mede tot uitdrukking in de keuze en plaats van de functiewoorden. In voorgelezen spraak is deze activiteit al door de opsteller van de tekst uitgevoerd. Op grond daarvan verwachten we dat er in spontane spraak frequenter gestotterd zal worden aan het begin van de deelzinnen en op functiewoorden dan in voorgelezen spraak. Deze veronderstelling vindt ook steun in de resultaten. In spontane spraak moeten de inhoudswoorden ook door de spreker zelf ingevuld worden; hij heeft hierbij echter
de vrije keus om woorden te gebruiken waarvan hij verwacht dat die niet tot stotteren zullen leiden. In voorgelezen spraak zijn de woorden door de schrijver van de tekst voorgeschreven; de stotteraar zal ook de voor hem problematische woorden moeten gebruiken. Dit geldt voor alle posities in de zin in gelijke mate. We mogen dan ook verwachten dat er geen positie-effect bij lexicale woorden optreedt. Deze voorspelling wordt door de resultaten bevestigd; voor wat betreft frequentie werken belasting door keuze en moeilijkheid van gedwongen gebruik elkaar tegen. De verwachting dat deze factoren elkaar in evenwicht houden wordt door de resultaten eveneens bevestigd.

Conclusie

Op grond van de bevindingen van het hier gerapporteerde onderzoek lijkt het aannemelijk om het verschil in procesactiviteit aan het begin van deelzinnen in spontane en voorgelezen spraak te verklaren met het veronderstelde verschil in syntactische activiteit in beide spraaksoorten. Deze verklaring wordt ondersteund door het gegeven dat in het begin van deelzinnen juist op woorden die een grammaticale rol hebben, de functiewoorden, meer gestotterd worden dan op het eind. Daarbij komt nog dat bovengenoemd effect in spontane spraak sterker is dan in voorgelezen spraak. Alle resultaten convergeren in de richting van de veronderstelling dat het proces van syntactische planning weerspiegeld wordt in de hoeveelheid stotteren en dat dit proces voornamelijk aan het begin van deelzinnen plaatsvindt. De verwachtingen die in de hier getoetste hypotheses zijn geformuleerd waren gebaseerd op de aannamer dat het ‘demands and capacity’ model van Starkweather ook voor linguistische parameters geldig is. Dit was wel door Starkweather gepostuleerd, maar nooit als zodanig getoetst. Onze resultaten geven een empirische ondersteuning aan deze veronderstelling.

Summary

The frequency of stuttering in read-out and spontaneous speech was compared on different word positions and word types. We found that the frequency of stuttering in read-out speech is lower than in spontaneous speech. In spontaneous speech more stuttering occurs in the beginning of a clause than in its remaining part. In read-out speech, however, the frequency of stuttering is about the same on each word position. If the frequency of stuttering is an indication for the effort of planning processes, resulting in an overloading of the speech production system, we conclude that in read-out speech there is less planning effort in the beginning of a clause than in spontaneous speech.

Considering word type it is striking that both in read-out speech and spontaneous speech, relatively more stuttered function words are observed in the beginning of a clause than in the remaining part. Because of the syntactic role of function words we conclude that in read-out speech the syntactic processes attribute less to the overload of the speech production system than in spontaneous speech. This conclusion is confirmed by our finding that the frequency of stuttering on function words is higher in spontaneous speech than in read-out speech.
Literatuur

